Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

A pair of Sudoku puzzles that together lead to a complete solution.

Use the differences to find the solution to this Sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Four small numbers give the clue to the contents of the four surrounding cells.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

You need to find the values of the stars before you can apply normal Sudoku rules.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Use the clues about the shaded areas to help solve this sudoku

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A Sudoku with clues given as sums of entries.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A Sudoku that uses transformations as supporting clues.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Two sudokus in one. Challenge yourself to make the necessary connections.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Two sudokus in one. Challenge yourself to make the necessary connections.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A Sudoku based on clues that give the differences between adjacent cells.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.