Given the products of adjacent cells, can you complete this Sudoku?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Given the products of diagonally opposite cells - can you complete this Sudoku?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A Sudoku that uses transformations as supporting clues.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

You need to find the values of the stars before you can apply normal Sudoku rules.

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Find out about Magic Squares in this article written for students. Why are they magic?!

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?