A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

The challenge is to find the values of the variables if you are to solve this Sudoku.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

You need to find the values of the stars before you can apply normal Sudoku rules.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Two sudokus in one. Challenge yourself to make the necessary connections.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

A pair of Sudoku puzzles that together lead to a complete solution.

A Sudoku that uses transformations as supporting clues.

Four small numbers give the clue to the contents of the four surrounding cells.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

The clues for this Sudoku are the product of the numbers in adjacent squares.

A Sudoku based on clues that give the differences between adjacent cells.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This Sudoku requires you to do some working backwards before working forwards.

Solve the equations to identify the clue numbers in this Sudoku problem.

A Sudoku with clues given as sums of entries.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Use the clues about the shaded areas to help solve this sudoku

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Two sudokus in one. Challenge yourself to make the necessary connections.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Use the differences to find the solution to this Sudoku.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.