Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

A Sudoku that uses transformations as supporting clues.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A challenging activity focusing on finding all possible ways of stacking rods.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Given the products of adjacent cells, can you complete this Sudoku?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A few extra challenges set by some young NRICH members.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Two sudokus in one. Challenge yourself to make the necessary connections.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

This challenge extends the Plants investigation so now four or more children are involved.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Two sudokus in one. Challenge yourself to make the necessary connections.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.