Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

How many solutions can you find to this sum? Each of the different letters stands for a different number.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

A few extra challenges set by some young NRICH members.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

How many different symmetrical shapes can you make by shading triangles or squares?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

In this matching game, you have to decide how long different events take.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?