Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

An investigation that gives you the opportunity to make and justify predictions.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find out what a "fault-free" rectangle is and try to make some of your own.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you find all the different ways of lining up these Cuisenaire rods?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

An activity making various patterns with 2 x 1 rectangular tiles.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

This activity investigates how you might make squares and pentominoes from Polydron.