Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This dice train has been made using specific rules. How many different trains can you make?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Can you make square numbers by adding two prime numbers together?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?