Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you use this information to work out Charlie's house number?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you use the information to find out which cards I have used?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Number problems at primary level that require careful consideration.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Can you make square numbers by adding two prime numbers together?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.