How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many different symmetrical shapes can you make by shading triangles or squares?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

In how many ways can you stack these rods, following the rules?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

An activity making various patterns with 2 x 1 rectangular tiles.

How many models can you find which obey these rules?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

These practical challenges are all about making a 'tray' and covering it with paper.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Find out what a "fault-free" rectangle is and try to make some of your own.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

This task follows on from Build it Up and takes the ideas into three dimensions!

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you find all the ways to get 15 at the top of this triangle of numbers?