Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you use this information to work out Charlie's house number?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Can you use the information to find out which cards I have used?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

These practical challenges are all about making a 'tray' and covering it with paper.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This dice train has been made using specific rules. How many different trains can you make?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In this matching game, you have to decide how long different events take.