10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the best way to shunt these carriages so that each train can continue its journey?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

These practical challenges are all about making a 'tray' and covering it with paper.

How many models can you find which obey these rules?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

In how many ways can you stack these rods, following the rules?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?