You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

An activity making various patterns with 2 x 1 rectangular tiles.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

What is the best way to shunt these carriages so that each train can continue its journey?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you find all the different ways of lining up these Cuisenaire rods?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How many different triangles can you make on a circular pegboard that has nine pegs?

These practical challenges are all about making a 'tray' and covering it with paper.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you find all the different triangles on these peg boards, and find their angles?

Find out what a "fault-free" rectangle is and try to make some of your own.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.