During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

Can you replace the letters with numbers? Is there only one solution in each case?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

The pages of my calendar have got mixed up. Can you sort them out?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

What could the half time scores have been in these Olympic hockey matches?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What happens when you round these numbers to the nearest whole number?

Can you work out some different ways to balance this equation?

In this matching game, you have to decide how long different events take.

Have a go at balancing this equation. Can you find different ways of doing it?

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you find all the different ways of lining up these Cuisenaire rods?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Find out what a "fault-free" rectangle is and try to make some of your own.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Find out about Magic Squares in this article written for students. Why are they magic?!

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.