A challenging activity focusing on finding all possible ways of stacking rods.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Use the clues about the symmetrical properties of these letters to place them on the grid.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

How many different symmetrical shapes can you make by shading triangles or squares?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

A few extra challenges set by some young NRICH members.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Can you find all the different triangles on these peg boards, and find their angles?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

In how many ways can you stack these rods, following the rules?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

In this matching game, you have to decide how long different events take.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

How many different triangles can you make on a circular pegboard that has nine pegs?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.