This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you find all the different triangles on these peg boards, and find their angles?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Try out the lottery that is played in a far-away land. What is the chance of winning?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

A challenging activity focusing on finding all possible ways of stacking rods.

In this matching game, you have to decide how long different events take.

Can you find all the different ways of lining up these Cuisenaire rods?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many different triangles can you make on a circular pegboard that has nine pegs?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

You need to find the values of the stars before you can apply normal Sudoku rules.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?