An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

How many different symmetrical shapes can you make by shading triangles or squares?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Two sudokus in one. Challenge yourself to make the necessary connections.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

A Sudoku that uses transformations as supporting clues.

A Sudoku with clues given as sums of entries.

Find out about Magic Squares in this article written for students. Why are they magic?!

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Find out what a "fault-free" rectangle is and try to make some of your own.

Two sudokus in one. Challenge yourself to make the necessary connections.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Try out the lottery that is played in a far-away land. What is the chance of winning?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

In this matching game, you have to decide how long different events take.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A challenging activity focusing on finding all possible ways of stacking rods.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.