If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?