This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A Sudoku that uses transformations as supporting clues.

A Sudoku with clues given as sums of entries.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Solve the equations to identify the clue numbers in this Sudoku problem.

This Sudoku requires you to do some working backwards before working forwards.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The challenge is to find the values of the variables if you are to solve this Sudoku.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

You need to find the values of the stars before you can apply normal Sudoku rules.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Four small numbers give the clue to the contents of the four surrounding cells.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.