Try out the lottery that is played in a far-away land. What is the chance of winning?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

How many models can you find which obey these rules?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many different triangles can you make on a circular pegboard that has nine pegs?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

What is the best way to shunt these carriages so that each train can continue its journey?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

This activity investigates how you might make squares and pentominoes from Polydron.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Investigate the different ways you could split up these rooms so that you have double the number.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?