Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Given the products of adjacent cells, can you complete this Sudoku?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Can you work out some different ways to balance this equation?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Have a go at balancing this equation. Can you find different ways of doing it?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This dice train has been made using specific rules. How many different trains can you make?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Can you make square numbers by adding two prime numbers together?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

How many possible necklaces can you find? And how do you know you've found them all?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?