A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Given the products of adjacent cells, can you complete this Sudoku?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

This task follows on from Build it Up and takes the ideas into three dimensions!