Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

A few extra challenges set by some young NRICH members.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

This challenge extends the Plants investigation so now four or more children are involved.

A challenging activity focusing on finding all possible ways of stacking rods.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Given the products of adjacent cells, can you complete this Sudoku?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This Sudoku, based on differences. Using the one clue number can you find the solution?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you find all the different triangles on these peg boards, and find their angles?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A Sudoku that uses transformations as supporting clues.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Given the products of diagonally opposite cells - can you complete this Sudoku?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.