Given the products of diagonally opposite cells - can you complete this Sudoku?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A Sudoku that uses transformations as supporting clues.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Two sudokus in one. Challenge yourself to make the necessary connections.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Two sudokus in one. Challenge yourself to make the necessary connections.

Find out about Magic Squares in this article written for students. Why are they magic?!

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.