Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Four small numbers give the clue to the contents of the four surrounding cells.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku with clues given as sums of entries.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Two sudokus in one. Challenge yourself to make the necessary connections.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Two sudokus in one. Challenge yourself to make the necessary connections.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A Sudoku that uses transformations as supporting clues.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different triangles on these peg boards, and find their angles?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

You need to find the values of the stars before you can apply normal Sudoku rules.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?