Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

This Sudoku requires you to do some working backwards before working forwards.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Solve the equations to identify the clue numbers in this Sudoku problem.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A Sudoku that uses transformations as supporting clues.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Four small numbers give the clue to the contents of the four surrounding cells.

A Sudoku with clues given as sums of entries.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Two sudokus in one. Challenge yourself to make the necessary connections.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Use the differences to find the solution to this Sudoku.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

You need to find the values of the stars before you can apply normal Sudoku rules.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Find out about Magic Squares in this article written for students. Why are they magic?!

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?