An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many models can you find which obey these rules?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Find out what a "fault-free" rectangle is and try to make some of your own.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

You have 5 darts and your target score is 44. How many different ways could you score 44?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

If you had 36 cubes, what different cuboids could you make?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?