Find the values of the nine letters in the sum: FOOT + BALL = GAME

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Number problems at primary level that require careful consideration.

Have a go at balancing this equation. Can you find different ways of doing it?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you make square numbers by adding two prime numbers together?

Can you work out some different ways to balance this equation?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Can you replace the letters with numbers? Is there only one solution in each case?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Given the products of adjacent cells, can you complete this Sudoku?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?