You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A few extra challenges set by some young NRICH members.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Can you find all the different triangles on these peg boards, and find their angles?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you use the information to find out which cards I have used?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

In this matching game, you have to decide how long different events take.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A challenging activity focusing on finding all possible ways of stacking rods.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

How many different triangles can you make on a circular pegboard that has nine pegs?