This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you work out some different ways to balance this equation?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you replace the letters with numbers? Is there only one solution in each case?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Have a go at balancing this equation. Can you find different ways of doing it?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

A few extra challenges set by some young NRICH members.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Using the statements, can you work out how many of each type of rabbit there are in these pens?