Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

An investigation that gives you the opportunity to make and justify predictions.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Given the products of adjacent cells, can you complete this Sudoku?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

This dice train has been made using specific rules. How many different trains can you make?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Find out about Magic Squares in this article written for students. Why are they magic?!

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?