Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A Sudoku that uses transformations as supporting clues.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Two sudokus in one. Challenge yourself to make the necessary connections.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku with clues given as sums of entries.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you find all the different triangles on these peg boards, and find their angles?

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

A few extra challenges set by some young NRICH members.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.