A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

Can you draw a square in which the perimeter is numerically equal to the area?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

An investigation that gives you the opportunity to make and justify predictions.

Can you find all the different ways of lining up these Cuisenaire rods?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

How many models can you find which obey these rules?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

These practical challenges are all about making a 'tray' and covering it with paper.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How many ways can you find of tiling the square patio, using square tiles of different sizes?

If you had 36 cubes, what different cuboids could you make?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

An activity making various patterns with 2 x 1 rectangular tiles.