A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you draw a square in which the perimeter is numerically equal to the area?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Can you find all the different ways of lining up these Cuisenaire rods?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

How many models can you find which obey these rules?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

An investigation that gives you the opportunity to make and justify predictions.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

These practical challenges are all about making a 'tray' and covering it with paper.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

These two group activities use mathematical reasoning - one is numerical, one geometric.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

If you had 36 cubes, what different cuboids could you make?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Investigate the different ways you could split up these rooms so that you have double the number.