A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

How many different symmetrical shapes can you make by shading triangles or squares?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Find out about Magic Squares in this article written for students. Why are they magic?!

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Use the differences to find the solution to this Sudoku.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

A few extra challenges set by some young NRICH members.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Find out what a "fault-free" rectangle is and try to make some of your own.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Two sudokus in one. Challenge yourself to make the necessary connections.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Two sudokus in one. Challenge yourself to make the necessary connections.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.