Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

An investigation that gives you the opportunity to make and justify predictions.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you use the information to find out which cards I have used?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

What happens when you round these three-digit numbers to the nearest 100?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

In how many ways can you stack these rods, following the rules?

The pages of my calendar have got mixed up. Can you sort them out?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

This article for primary teachers suggests ways in which to help children become better at working systematically.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you draw a square in which the perimeter is numerically equal to the area?