In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

How many trapeziums, of various sizes, are hidden in this picture?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.