These practical challenges are all about making a 'tray' and covering it with paper.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the best way to shunt these carriages so that each train can continue its journey?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

An activity making various patterns with 2 x 1 rectangular tiles.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you draw a square in which the perimeter is numerically equal to the area?