Design an arrangement of display boards in the school hall which fits the requirements of different people.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

An activity making various patterns with 2 x 1 rectangular tiles.

These practical challenges are all about making a 'tray' and covering it with paper.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many models can you find which obey these rules?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In how many ways can you stack these rods, following the rules?

Investigate the different ways you could split up these rooms so that you have double the number.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

This task follows on from Build it Up and takes the ideas into three dimensions!

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Can you find all the ways to get 15 at the top of this triangle of numbers?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How many different triangles can you make on a circular pegboard that has nine pegs?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.