This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

You have 5 darts and your target score is 44. How many different ways could you score 44?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Number problems at primary level that require careful consideration.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you replace the letters with numbers? Is there only one solution in each case?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Can you make square numbers by adding two prime numbers together?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you use this information to work out Charlie's house number?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

An investigation that gives you the opportunity to make and justify predictions.