How many models can you find which obey these rules?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

If you had 36 cubes, what different cuboids could you make?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you find all the different ways of lining up these Cuisenaire rods?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

In how many ways can you stack these rods, following the rules?

An activity making various patterns with 2 x 1 rectangular tiles.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

What is the best way to shunt these carriages so that each train can continue its journey?

How many different triangles can you make on a circular pegboard that has nine pegs?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

This activity investigates how you might make squares and pentominoes from Polydron.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

These practical challenges are all about making a 'tray' and covering it with paper.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

These two group activities use mathematical reasoning - one is numerical, one geometric.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.