Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

How many trapeziums, of various sizes, are hidden in this picture?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you use this information to work out Charlie's house number?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

In this matching game, you have to decide how long different events take.

Investigate the different ways you could split up these rooms so that you have double the number.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What could the half time scores have been in these Olympic hockey matches?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

In how many ways can you stack these rods, following the rules?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?