Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

An activity making various patterns with 2 x 1 rectangular tiles.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

How many models can you find which obey these rules?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

These practical challenges are all about making a 'tray' and covering it with paper.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many different symmetrical shapes can you make by shading triangles or squares?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

How many trapeziums, of various sizes, are hidden in this picture?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?