Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you find all the different ways of lining up these Cuisenaire rods?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

These practical challenges are all about making a 'tray' and covering it with paper.

How many different triangles can you make on a circular pegboard that has nine pegs?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

An activity making various patterns with 2 x 1 rectangular tiles.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

This challenge extends the Plants investigation so now four or more children are involved.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

How many models can you find which obey these rules?

Try out the lottery that is played in a far-away land. What is the chance of winning?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

In this matching game, you have to decide how long different events take.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.