Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Two sudokus in one. Challenge yourself to make the necessary connections.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

A Sudoku that uses transformations as supporting clues.

Two sudokus in one. Challenge yourself to make the necessary connections.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

A few extra challenges set by some young NRICH members.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Investigate the different ways you could split up these rooms so that you have double the number.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?