Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many different triangles can you make on a circular pegboard that has nine pegs?

Two sudokus in one. Challenge yourself to make the necessary connections.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A Sudoku that uses transformations as supporting clues.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you replace the letters with numbers? Is there only one solution in each case?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

How many models can you find which obey these rules?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Two sudokus in one. Challenge yourself to make the necessary connections.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?