Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Two sudokus in one. Challenge yourself to make the necessary connections.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Two sudokus in one. Challenge yourself to make the necessary connections.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

A Sudoku with clues given as sums of entries.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

A Sudoku that uses transformations as supporting clues.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

How many models can you find which obey these rules?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This activity investigates how you might make squares and pentominoes from Polydron.

Given the products of diagonally opposite cells - can you complete this Sudoku?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

In how many ways can you stack these rods, following the rules?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.