Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Can you draw a square in which the perimeter is numerically equal to the area?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you find all the different triangles on these peg boards, and find their angles?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

This activity investigates how you might make squares and pentominoes from Polydron.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How many different triangles can you make on a circular pegboard that has nine pegs?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

These practical challenges are all about making a 'tray' and covering it with paper.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?