Search by Topic

Resources tagged with Working systematically similar to Fraction Fascination:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 325 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Working systematically

problem icon

Ice Cream

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

problem icon

Peaches Today, Peaches Tomorrow....

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

problem icon

Shaping Up

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

problem icon

Egyptian Rope

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

problem icon

Halloween Investigation

Stage: 2 Challenge Level: Challenge Level:1

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

problem icon

Making Squares

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

problem icon

Street Party

Stage: 2 Challenge Level: Challenge Level:1

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

problem icon

Geoboards

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

problem icon

Calcunos

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

problem icon

Sticks and Triangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

problem icon

Polydron

Stage: 2 Challenge Level: Challenge Level:1

This activity investigates how you might make squares and pentominoes from Polydron.

problem icon

Putting Two and Two Together

Stage: 2 Challenge Level: Challenge Level:1

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

problem icon

Numerically Equal

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you draw a square in which the perimeter is numerically equal to the area?

problem icon

Nine-pin Triangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many different triangles can you make on a circular pegboard that has nine pegs?

problem icon

Tri.'s

Stage: 2 Challenge Level: Challenge Level:1

How many triangles can you make on the 3 by 3 pegboard?

problem icon

Newspapers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

problem icon

Square Corners

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

problem icon

Triangles All Around

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you find all the different triangles on these peg boards, and find their angles?

problem icon

3 Rings

Stage: 2 Challenge Level: Challenge Level:1

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

problem icon

My New Patio

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

problem icon

Shopping Basket

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

problem icon

Cover the Tray

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These practical challenges are all about making a 'tray' and covering it with paper.

problem icon

Peg and Pin Boards

Stage: 1 and 2

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

problem icon

Quadrilaterals

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

problem icon

Ribbon Squares

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

problem icon

Tea Cups

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

problem icon

Tiles on a Patio

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How many ways can you find of tiling the square patio, using square tiles of different sizes?

problem icon

Calendar Cubes

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

problem icon

Snails' Trails

Stage: 2 Challenge Level: Challenge Level:1

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

problem icon

Adding Plus

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

problem icon

Brush Loads

Stage: 2 Challenge Level: Challenge Level:1

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

problem icon

Ancient Runes

Stage: 2 Challenge Level: Challenge Level:1

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

problem icon

Seven Flipped

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

problem icon

Weights

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Different combinations of the weights available allow you to make different totals. Which totals can you make?

problem icon

Seven Pots of Plants

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

problem icon

The Pet Graph

Stage: 2 Challenge Level: Challenge Level:1

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

problem icon

Symmetry Challenge

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

problem icon

Plate Spotting

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

problem icon

Fake Gold

Stage: 2 Challenge Level: Challenge Level:1

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

problem icon

LOGO Challenge - Triangles-squares-stars

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

problem icon

Fencing Lambs

Stage: 2 Challenge Level: Challenge Level:1

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

problem icon

Eight Queens

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

problem icon

1 to 8

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

problem icon

LOGO Challenge - Pentagram Pylons

Stage: 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

problem icon

Pouring the Punch Drink

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

problem icon

One to Fifteen

Stage: 2 Challenge Level: Challenge Level:1

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

problem icon

The Pied Piper of Hamelin

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

problem icon

Octa Space

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

problem icon

Two on Five

Stage: 1 and 2 Challenge Level: Challenge Level:2 Challenge Level:2

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

problem icon

Room Doubling

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Investigate the different ways you could split up these rooms so that you have double the number.