Use the differences to find the solution to this Sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

Four small numbers give the clue to the contents of the four surrounding cells.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

A few extra challenges set by some young NRICH members.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

The clues for this Sudoku are the product of the numbers in adjacent squares.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A Sudoku that uses transformations as supporting clues.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Given the products of adjacent cells, can you complete this Sudoku?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

You need to find the values of the stars before you can apply normal Sudoku rules.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.