If you had 36 cubes, what different cuboids could you make?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

How many models can you find which obey these rules?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

These two group activities use mathematical reasoning - one is numerical, one geometric.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Investigate the different ways you could split up these rooms so that you have double the number.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Can you draw a square in which the perimeter is numerically equal to the area?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you order the digits from 1-6 to make a number which is divisible by 6 so when the last digit is removed it becomes a 5-figure number divisible by 5, and so on?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.