Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Can you use the information to find out which cards I have used?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This Sudoku, based on differences. Using the one clue number can you find the solution?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Number problems at primary level that require careful consideration.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Find out what a "fault-free" rectangle is and try to make some of your own.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Four small numbers give the clue to the contents of the four surrounding cells.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Find out about Magic Squares in this article written for students. Why are they magic?!

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

How many different triangles can you make on a circular pegboard that has nine pegs?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Can you find all the different ways of lining up these Cuisenaire rods?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.