The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Have a go at balancing this equation. Can you find different ways of doing it?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Can you replace the letters with numbers? Is there only one solution in each case?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Given the products of adjacent cells, can you complete this Sudoku?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Investigate the different ways you could split up these rooms so that you have double the number.

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This dice train has been made using specific rules. How many different trains can you make?

Two sudokus in one. Challenge yourself to make the necessary connections.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?