Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you find all the different ways of lining up these Cuisenaire rods?

In how many ways can you stack these rods, following the rules?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Investigate the different ways you could split up these rooms so that you have double the number.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

In this matching game, you have to decide how long different events take.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

An activity making various patterns with 2 x 1 rectangular tiles.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!